top of page

Pharma Calculations

Agitator tip velocity

Tip Velocity : Vt ( m/sec )= π Da N
N = rotational speed in seconds
Da = agitator swip dia. m
ExampleReactor with capacity 5 KL agitator running with 75 rpm agitator diameter is 1200mm Calculate Tip velocity Solution. : GivenDa = 1200 mm = 1.2 mN = 75 rpm = 1.25 rps
Tip velocity Vt =π Da N

Vt = 3.142 X 1.2 X 1.25 = 4.71  m/s

Agitator tip velocity

Reynold's Number : NRE
=    (ρ∗N∗Da2 )/µ
Where,
ρ = density of liquid kg/m3
N = rotational speed in seconds
Da = agitator swip  dia. m
µ = viscosity of liquid kg/m sec
 
Example
Reactor agitator running with 75 rpm. Agitator diameter is 1200 mm, Liquid viscosity is 1200 cp and density is 1800 kg/m3. Calculate Reynolds number NRE .

Solution :
Given  viscosity = 1200 cp = 1.2 kg/m.s
  RPM= 75 = 1.25 rps
             Density = 1800 kg / m3
 
  NRE =    (ρ∗N∗Da2 ) =   2700

Agitator power

Agitator Power Watt  :  P
= Np  ρ * N3 * Da5           
ρ= density of liquid kg/m3   
N = rotational speed in seconds
Da = agitator swip dia. m
Np= power number  
 
Example
Reactor running with 75 rpm . Agitator diameter is 1200mm, Liquid viscosity is 1.2 kg/m.s and density 1000 kg/m3  . 
Calculate  Agitator power
Solution :
Given ρ = 1000 kg/m3     N= 1.25 rps      Da = 1.2 m Np = 0.6
Agitator power = Np* ρ *N^3* Da^5
                         = 0.6 x 1000 x 1.25^3  * 1.25 ^5
                         = 2916 W = 2.916 KW = 3.9 HP

Agitator power/Volume ratio

Power / Volume (W/lt)
= (Np ∗ρ ∗ N3 ∗Da5 )/Vmass
 
ρ = density of liquid kg/m3
N = rotational speed in seconds
Da = agitator swip  dia. m
Np= power number  
Vmass = Liquid volume in lt.  
 
Example
Reactor  running with 75 rpm . Agitator diameter is 1200mm, Liquid viscosity is 1.2 kg/m.s and density 1000 kg/m3  .
Reaction mass volume 1500 lt.  
Calculate : Agitator power / volume
Solution :
Given
ρ = 1000 kg/m3     N= 1.25 rps      Da = 1.2 m , Np = 0.6    V =  1500 lt
Agitator power = (Np ∗ ρ ∗  N3 ∗ Da5)/(Vmass )
                         = (0.6 ∗ 1000∗ 1.25^3  ∗ 1.25^5 )/1500         
                        =  1.944 W/ lt  

Agitator pumping capacity

Agitator Pumping Capacity  : Q in  m3/s
= NQ N Da3 
N = rotational speed in seconds 
Da = agitator swip dia. in m
NQ = flow number
 
Example
Reactor  running with 75 rpm . Agitator diameter is 600mm, reactor diameter is 1100 mm and density 1000 kg/m3
Calculate   Agitator pumping capacity
Solution :
Given
NQ = 0.6  
 N = 75 rpm = 1.25 rps ,
 Da = 0.6 m
 Q = NQ N Da3
     = 0.6 X 1.25 X 0.6^3 = 0.16   m3/s

Agitator pumping capacity

Agitator Pumping Capacity  : Q in  m3/s
= NQ N Da3 
N = rotational speed in seconds 
Da = agitator swip dia. in m
NQ = flow number
 
Example
Reactor  running with 75 rpm . Agitator diameter is 600mm, reactor diameter is 1100 mm and density 1000 kg/m3
Calculate   Agitator pumping capacity
Solution :
Given
NQ = 0.6  
 N = 75 rpm = 1.25 rps ,
 Da = 0.6 m
 Q = NQ N Da3
     = 0.6 X 1.25 X 0.6^3 = 0.16   m3/s

Mixing time

Mixing time : tm in sec
= 5∗ Vmass)/NQ ∗ N ∗ Da^3
 
N = rotational speed in seconds 
Da = agitator swip dia. m
NQ = flow number `
Vmass = Liquid volume m3   
 
Example
Reactor with capacity 5 KL contain 1.5 KL of liquid , running with 90 rpm. Agitator diameter is 1200 mm
Calculate  : Mixing time
Solution :
Given
V mass = 1.5 m3
NQ= 0.5 ( for anchor ) ,
N = 90 rpm ( 1.5 rps ),
Da = 1200 mm = 1.2 m 
tm =   5∗ Vmass)/NQ ∗ N ∗ Da^3 =5 x 1.5 / 0.6∗ 1.5 ∗ 1.2^3 = 4.82  s

Shear rate

Shear rate
 = [P/(v∗ µ)) ] ^0.5
r = average shear rate (S-1  ) 
P = Agitator power in W
µ = Liquid viscosity (Pa .  S) or kg/m s or poise  
 1 Pa. s = 10 Poise  
V  = liquid volume  in   m3  
 
Example
A Reactor contain 2000 L of Liquid  , Agitator power is 2916 W, viscosity of liquid is 1.2 pa. s
Calculate shear rate
Solution :
Given  
V = 2 m3    P = 2916 W µ = 1.2 pa.s
   
 r = [P/(V ∗ µ)) ] ^ 0.5    = [2916/(2∗1.2 )) ] ^0.5 = 34.85  S-1

Just suspension speed

Just Suspension speed (NJS) (Sec)
= S v^0.1 [g  (ρS – ρL)/ρL  ]0.45     X^0.13 dp^0.2  D^–0.85
NJS= just suspension speed, rps 
S= geometry factor  
dp= Particle diameter, m
g = gravitational acceleration, m/s2
ρL = Liquid density , kg/m3
 ρs = Solid density, kg/m3
D = impeller diameter, m
 X= Wt. of solid / wt. of liquid x 100, % 
v= Kinematic viscosity, m2/s
v = µ / ρ
µ = Dynamic viscosity in kg/m.s or  pa.s or Poise
       1 kg/ms or pa. s = 10 poise
 
Example
Calculate the just suspension impeller speed for AICI. The impeller is 45° a pitched blade  with D/T value of 1/3 ànd blade width  of D/4 located.   
Calculate :   NJS   in   rps  
Solution :
Given
S= 3.7
dp= 5000 µm ( 0.005 m ) 
g = 9.81 m/s2
ρL = 1326 kg/m3
 ρs = 2440 kg/m3
D = 0.724  m
 X= 0.4
µ = 1 cp = 0.001 kg /s
v = µ / ρ
v = 7.54 * 10-7  m2/s
Njs = = S  v^0.1 [g  (ρS – ρL)/ρL  ]0.45     X^0.13 dp^0.2  D^–0.85
       = 3.7* (7.54 10^-7)^0.1 [9.81   x (2440 – 1326) /326 ]^0.45     0.4^ 0.13 0.005 ^0.2  0.724^–0.85
       = 0.95 rps =57 rpm

Batch reactor heat transfer area

Batch reactor heat transfer area :
 
Cylindrical section + Torispherical section
πDL + [ (ᴫ/24  )∗ ((1.147 ∗ D)^2) ]
Where,
D=Diameter of reactor cylindrical section in m
L =Height of cylindrical section in m
 
 
Reactor condenser sizing m2
Ac = (UR ∗AR ∗LMTD rea )/(Uc ∗LMTD cond)
UR = reactor jacket overall HTC, kcal/hr.m2. °C
AR = Jacket heating area, m2
Uc =  Condenser  overall HTC, kcal/hr.m2. °C
 
Example
A stainless steel reactor having capacity 4 KL. Reactor subjected to maximum temperature 25 °C
( LMTD = 20 °C ) jacket side . Condenser side ( LMTD = 25 °C ).
Calculate reactor condenser sizing in m2
Solution :
Given
V = 4 KL
UR = 300 kcal/hr m2 °C
Uc = 350 kcal / hr.m2. °C
LMTD rea = 20 °C 
LMTD cond = 25 °C
Reactor surface area = 3.8 V0.68   = 3.8 40.68    = 9.75 m2 
Ac = (UR ∗AR ∗LMTD rea )/(Uc ∗LMTD cond) =(300∗9.75∗20)/(350∗25))    =  6.68 m2

Reactor vent sizing

Reactor vent sizing mm2
 =   179400 ∗Q∗√(T∗G∗Z))/(C ∗ K ∗ P1 ∗ kb  ))
 
Q=Required relieving capacity, m3/min
C = coeffient  For sp. Heats  ( use value 315  )
T= temp in ℃
G=sp. Gravity of gas  
Z=Compressibility factor  ( used value 1 )             
K=coefficient of discharge ( used value 0.975  )
P1=Relieving pressure, abs+guage+21% excess  in kPa
Kb= capacity correction factor  ( use value 1 )
Example
Rate of vaporization of ethylene gas vapour through the reactor vent at flow rate Q is  326 m3/min  T is 93 ℃ and P is  1170 Kpa. Calculate reactor vent size
Given
Q= 326 m3 / min
P 405.3 Kpa
T =93 ℃ =366 k
G= 0.78
Z= 1
K = 0.975
P1 = 1170 + 245.7 + 110 = 1525.7 kpa
Kb = 1
C = 315 
Solution :
 Reactor vent size 
 = 79400 ∗Q∗√(T∗G∗Z))/(C ∗ K ∗ P1 ∗ kb ))
 =  (179400 ∗326∗ 36√(366∗0.78∗1))/(1∗ 315 ∗0.975 ∗1525.7 )) 
 =  2346 mm2

Reactor vent sizing

Liquid  effective agitation depth  : dp in m
 
 =(Rvol -Rt )/(ᴫ/4∗DR^2))
(Rvol = reaction mass volume m3 
DR = reactor internal dia. m
Rt  = Torispherical volume =  (ᴫ/24  ∗DR3)      
 
Example
A stainless steel reactor having diameter  1800 mm contain reaction mass volume 1 KL
Calculate liquid effective agitation depth  
Solution :
Given
DR= 1800 mm = 1.8 m
 Rvol    = 1 KL = 1 m3    
Rt = ᴫ/24  ∗DR3 = 0.7635 m2
 
  dp     =   (Rvol -Rt )/(ᴫ/4  ∗DR^2)    =   (1-0.7635)/2.54)       =    0.092  m

Scale up extraction calculation

Settling Test
Procedure : Take ~ 100 ml slurry mass and settle for 3 min.
Obsevation and conclusion :
If settles down less 10 minutes --> Good to filter
If settles down before 30 min & cloudy mass --> Medium Filterability and use preferable centrifuge or high-pressure filter
If settles down in or above 30 min & cloudy mass --> difficult to filter, crystallization conditions need to be altered
 
Filtration rate test :
Procedure :
Using slurry mass (to be filtered) prepare ~ 5 cm cake thickness over Buckner filter paper.Charge ~100 ml slurry over the 5 cm cake bed and apply vacuum (NLT 650 mm Hg. Measure the time required to filter the mass in seconds.
Obsevation and conclusion :
If ML filters at a rate of > 40 lpm/m2 -->Good to filter
If ML filters at a rate of < 20 lpm/m2 -->Difficult to filter, crystallization conditions need to be altered
bottom of page